
COP 3330: Inheritance Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Inheritance and Polymorphism – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Inheritance Page 2 © Mark Llewellyn

Polymorphism
• One of the more important features of object-

oriented programming is that – a code expression
can invoke different methods depending on the
types of objects using the code. This language
feature is known as polymorphism.
– Some people view method overloading as syntactic or

primitive polymorphism. With method overloading,
Java can determine which method to invoke at compile
time. The decision is based on the invocation signature.

– In true polymorphism, sometimes referred to as pure
polymorphism, the decision as to which method to
invoke must be delayed until run-time.

COP 3330: Inheritance Page 3 © Mark Llewellyn

Polymorphism Example
//demonstrate polymorphism using various point classes
import java.awt.*;
import geometry.*;

public class PolymorphismDemo{
public static void main(String[] args) {

Point[] p = new Point[4]; //array of points
p[0] = new Colored3DPoint(4,4,4,Color.black);
p[1] = new ThreeDPoint(2,2,2);
p[2] = new ColoredPoint(3,3,Color.red);
p[3] = new Point(4,4);
for (int i = 0; i < p.length; i++){

String s = p[i].toString();
System.out.println(“p[“ + i + “]: “ + s);

}
return;

}
}

COP 3330: Inheritance Page 4 © Mark Llewellyn

Output from Polymorphism Example

COP 3330: Inheritance Page 5 © Mark Llewellyn

Polymorphism (cont.)

• The for loop in the main method of the code on the
previous slide contains the following polymorphic code:

• In Java, it is not the variable type that determines the
invocation, but the type of object at the location to which
the variable refers. The code is polymorphic because
array p is a heterogeneous list; that is each element
reference values of different types.

for (int i = 0; i < p.length; i++){
String s = p[i].toString();
System.out.println(“p[“ + i + “]: “ + s);

}

polymorphic
code

COP 3330: Inheritance Page 6 © Mark Llewellyn

Polymorphism (cont.)

• That array p is a heterogeneous list is a result of how its
elements are set.

Point[] p = new Point[4]; //array of points
p[0] = new Colored3DPoint(4,4,4,Color.black);
p[1] = new ThreeDPoint(2,2,2);
p[2] = new ColoredPoint(3,3,Color.red);
p[3] = new Point(4,4);

This assignment makes sense because
Colored3DPoint has an is-a relationship

with Point. Colored3DPoint extends
from ThreeDPoint, which extends from

Point.

This assignment causes p[1] to
refer to a ThreeDPoint object

which extends from Point.

This assignment causes p[3] to
refer to a Point object.

This assignment causes p[2] to refer to
a ColoredPoint object which extends

from Point.

COP 3330: Inheritance Page 7 © Mark Llewellyn

Polymorphism (cont.)

• Because array p is heterogeneous, the toString()
method that is invoked in the expression
p[i].toString() depends on the type of Point
object to which p[i] refers.

String s = p[0].toString();
String s = p[1].toString();
String s = p[2].toString();
String s = p[3].toString();

invokes Colored3DPoint method toString()

invokes ThreeDPoint method toString()

invokes ColoredPoint method toString()

invokes Point method toString()

COP 3330: Inheritance Page 8 © Mark Llewellyn

Flexibility for Future Enhancements

• With polymorphism, the decision on which method to
invoke in an expression may have to be determined at run-
time.

• This capability makes it possible to compile a method that
performs a method invocation in its body even though the
subclass eventually supplying the method has not yet been
implemented or even defined.

COP 3330: Inheritance Page 9 © Mark Llewellyn

Design with Inheritance in Mind
• When designing a collection of new but related classes,

pay attention to what are the common behaviors and
characteristics. This process is known as factorization.

– Try to create a coherent base class that provides this commonality.

– From the base class, subclasses can be defined to provide the
special behaviors and characteristics.

– Your current work effort should be reduced as common behaviors
are implemented just once.

– Future work efforts should also be minimized as new features can
be added by extending the existing classes.

COP 3330: Inheritance Page 10 © Mark Llewellyn

Inheritance Nuances
• There are some important nuances surrounding

inheritance behavior in Java. In the next few slides,
we’ll construct several small classes whose sole purpose
is to illustrate the most important of these nuances as
they pertain to:

1. Constructors

2. Controlling access

3. Data fields

4. Typing

5. Late binding

6. Finality

COP 3330: Inheritance Page 11 © Mark Llewellyn

Inheritance Nuances - Constructors
• Consider the following class B composed of two

constructors. Both constructors produce output when
invoked.

public class B {
//B(): default constructor
public B(){

System.out.println(“Using default constructor in B”);
}

//B(): specific constructor
public B(int i){

System.out.println(“Using int specific constructor in B”);
}

}

COP 3330: Inheritance Page 12 © Mark Llewellyn

Inheritance Nuances – Constructors (cont.)
• Before reading the explanation on page 13, try to determine the

output of the following program.

public class C extends B {
//C(): default constructor
public C(){

System.out.println(“Using default constructor in C”);
System.out.println();

}
//C(): specific constructor
public C(int a){

System.out.println(“Using int specific constructor in C”);
System.out.println();

}
//C(): specific constructor
public C(int a, int b){

System.out.println(“Using int-int specific constructor in C”);
System.out.println();

}
//main(): application entry point
public static void main (String[] args){

C c1 = new C();
C c2 = new C(2);
C c3 = new C(2,4); return;

} }

COP 3330: Inheritance Page 13 © Mark Llewellyn

Inheritance Nuances – Constructors (cont.)
• Output of the C.java program.

COP 3330: Inheritance Page 14 © Mark Llewellyn

Inheritance Nuances – Constructors (cont.)
//main(): application entry point

C c1 = new C();

Using B’s default constructor
Using C’s default constructor

Using B’s default constructor
Using C’s int constructor

Using B’s int constructor
Using C’s int-int constructor

Output

Construction is a two-step process.
Construction of c1 begins with the construction
of its superclass attributes. Implicit invocation
by Java of the superclass default constructor.
Exactly the same scenario occurs for object c2,
but C’s default int constructor is invoked.

//B(): default constructor
public B(){

System.out.println(“Using B’s default constructor”);
}

//C(): default constructor
public C(){

System.out.println(“Using C’s default constructor”);
System.out.println();

}

COP 3330: Inheritance Page 15 © Mark Llewellyn

Inheritance Nuances – Controlling Access
• Up to this point our member variables and methods have

either had public or private access rights.

– A public member has no restrictions on its access.

– A private member can only be used by the class that defines that
member.

• With respect to public and private access rights, a
subclass is treated no differently than any other Java
class.

– A subclass can access the superclass’s public members and
cannot access the superclass’s private members.

• Recall that Java supports two additional access rights:
protected and the default access. Only two classes in the
same package can access each other’s default access
members.

COP 3330: Inheritance Page 16 © Mark Llewellyn

Inheritance Nuances – Controlling Access (cont.)

• Besides being accessible in its own class, a protected
variable or method can be used by subclasses of its class.

• Consider the example in the next couple of slides. Class
P from package demo contains a private instance
variable data, a public default constructor, a
public accessor getData(), a protected
mutator setData(), and a facilitator print()
which has default access.

• Class Q extends class P. Thus Q can invoke P’s default
constructor, and mutator setData(). However, Q
cannot access directly P’s instance variable data.

COP 3330: Inheritance Page 17 © Mark Llewellyn

Inheritance Nuances – Controlling Access (cont.)
package demo;
public class P {

//instance variable
private int data;
//P(): default constructor
public P(){
setData(0);

}
//getData(): accessor
public int getData(){
return data;

}
//setData: mutator
protected void setData(int v){

data = v;
}
//print(): facilitator
void print(){

System.out.println();
}

}

COP 3330: Inheritance Page 18 © Mark Llewellyn

Inheritance Nuances – Controlling Access (cont.)
import demo.P;
public class Q extends P {

//Q(): default constructor
public Q(){
super();

}
//Q(): specific constructor
public Q(int v){
setData(v);

}
//toString(): facilitator
public String toString(){

int v = getData();
return String.valueOf(v);

}
//invalid1(): invalid method
public void invalid1(){

data = 12;
}
//invalid2(): illegal method
public void invalid2() {

print();
}

}

Q can access superclass’s public
default constructor

Q can access superclass’s protected
mutator method

Q can access superclass’s public
accessor method

Q cannot access directly
superclass’s private data field

Q cannot access directly
superclass’default access method
print() since Q is not in package

demo

COP 3330: Inheritance Page 19 © Mark Llewellyn

Inheritance Nuances – Controlling Access (cont.)
package demo; //R is a class in package demo
public class R {

//instance variable
private P p;
//R(): default constructor
public R(){
p = new P();

}
//set(): mutator
public void set(int v){
p.setData(v);

}
//get(): accessor
public int get(){

return p.getData();
}
//use(): facilitator
public void use(){

p.print();
}
//invalid(): illegal method
public void invalid() {

p.data = 12;
}

}

R can access P’s public default
constructor

R can access P’s protected mutator
method

R can access P’s public accessor
method

R can access P’s default access
method

R cannot access directly P’s private
data field

COP 3330: Inheritance Page 20 © Mark Llewellyn

Inheritance Nuances – Controlling Access (cont.)
import demo.P; //S is neither part of package demo nor extended from P
public class S {

//instance variable
private P p;
//S(): default constructor
public S(){
p = new P();

}
//get(): accessor
public int get(){
return p.getData(v);

}
//illegla1(): illegal method
public void illegal1 (int v){

p.setData(v);
}
//illegal2(): illegal method
public void illegal2(){

p.data = 12;
}
//illegal3(): illegal method
public void illegal3() {

p.print();
}

}

S can access P’s public default
constructor

S can access P’s public accessor

S cannot access P’s protected
mutator method

S cannot access directly P’s private
data field

S cannot access directly P’s default
access print() method

COP 3330: Inheritance Page 21 © Mark Llewellyn

Summary of Access Rights

Member Restriction this subclass package general

public

protected

default

private

yes

yes

yes

yes

yes

yes

no

no

yes

yes

yes

no

yes

no

no

no

COP 3330: Inheritance Page 22 © Mark Llewellyn

Inheritance Nuances – Data Fields
• Consider the class D shown on the next slide

which has a single protected int instance
variable d. Because the variable is protected,
classes which extend D have direct access to it.
The default constructor in D explicitly sets d =
0. The other D constructor sets d to the value of
its parameter v.

• We’ll use this class D for the next couple of
examples.

COP 3330: Inheritance Page 23 © Mark Llewellyn

Inheritance Nuances – Data Fields (cont.)
public class D {
//D instance variable
protected int d;

//D(): default constructor
public D(){

d = 0;
}

//D(): specific constructor
public D(int v){

d = v;
}

//printD(): facilitator
public void printD(){

System.out.println(“Value of d in D: “ + d);
System.out.println();

}
}

COP 3330: Inheritance Page 24 © Mark Llewellyn

Inheritance Nuances – Data Fields (cont.)

public class E extends D {
//E(): specific constructor
public E(int v) {

d = v;
super.d = v*100;

}

//printE(): facilitator
public void printE(){

System.out.println(“Value of d in D: “ + super.d);
System.out.println(“Value of d in E: “ + this.d);
System.out.println();

}
}

Although class E extends D, it does not introduce any new
instance variables. However, class E does define a single
constructor and a method printE().

For class E, both d and super.d
access superclass instance

variable d

COP 3330: Inheritance Page 25 © Mark Llewellyn

Inheritance Nuances – Data Fields (cont.)

• In contrast, class F both extends class D and
introduces a new instance variable.

– Because the new variable has the same name d as the
superclass instance variable, the superclass instance
variable is hidden in class F.

• Class F also defines a constructor, facilitator, and class
method main() which will enable the class to serve as
an application program.

COP 3330: Inheritance Page 26 © Mark Llewellyn

Inheritance Nuances – Data Fields (cont.)
public class F extends D {

//F instance variable
int d; //note default status of d
//F(): specific constructor
public F(int v){

d = v;
super.d = v*100;

}
//printF(): facilitator
public void printF(){

System.out.println(“D’s d: “ + super.d);
System.out.println(“F’s d: “ + this.d);
System.out.println();

}
//main(): application entry point
public static void main(String[] args){

E e = new E(1);
F f = new F(2);
e.printE();
f.printF();
return;

}
}

Output

COP 3330: Inheritance Page 27 © Mark Llewellyn

Inheritance Nuances – Data Fields (cont.)

//E(): specific constructor
public E(int v) {

d = v;
super.d = v*100;

}

Because class E does not define any instance variables itself, the
instance variable it manipulates is its superclass’s instance
variable.

Two separate modifications of
superclass’s instance variable d

public void printE(){
System.out.println(“D’s d: “ + super.d);
System.out.println(“E’s d: “ + this.d);
System.out.println();

}

The fact that d and super.d are referencing the same variable
means that E’s facilitator prints the same value twice.

In the case of the E
object referenced by e
from F’s main() method:
E e = new E(1), the
value 100 is printed by
both of these statements.

COP 3330: Inheritance Page 28 © Mark Llewellyn

Inheritance Nuances – Data Fields (cont.)

//F(): specific constructor
public F(int v){

d = v;
super.d = v*100;

}

Because class F defines an instance variable d, that definition
results in the superclass instance variable being hidden. Inside
an F method, the expression d refers to the F instance variable
and not the superclass instance variable.

modifies this.d

modifies super.d
superclass’s d

Thus, the two assignments in the constructor manipulate
different instance variables. When the constructor completes,
the value of the object’s F variable d is equal to v and the value
of the object’s superclass variable d is 100*v.

COP 3330: Inheritance Page 29 © Mark Llewellyn

Inheritance Nuances – Typing
• Consider the class X shown on the next slide which has a

default constructor, a boolean class method isX() that
reports whether its parameter v is of type X, and a boolean
class method isObject() that reports whether its
parameter v is of type Object.

public class X {
//default constructor
public X() {

//no body necessary
}
//isX(): class method
public static boolean isX(Object v){

return (v instanceof X);
}
//isObject(): class method
public static boolean isObject(X v){

return (v instanceof Object);
}

}

COP 3330: Inheritance Page 30 © Mark Llewellyn

Inheritance Nuances – Typing (cont.)

• Now consider program Y.java shown on the next
slide.

• Class Y extends class X. Besides defining method
main(), class Y provides a default constructor and a
boolean class method isY() that reports whether its
parameter v is of type Y.

• Before reading the analysis that begins on page 31,
determine the output of program Y.java.

COP 3330: Inheritance Page 31 © Mark Llewellyn

Inheritance Nuances – Typing (cont.)
public class Y extends X {

//Y() default constructor
public Y() {

//no body needed
}
//isY(): class method
public static boolean isY(Object v){

return (v instanceof Y);
}
//main(): application entry point
public static void main(String[] args){

X x = new X();
Y y = new Y();
X z = y;
System.out.println(“x is an Object: “ + X.isObject(x));
System.out.println(“x is an X: “ + X.isX(x));
System.out.println(“x is a Y: “ + Y.isY(x));
System.out.println();
System.out.println(“y is an Object: “ + X.isObject(y));
System.out.println(“y is an X: “ + X.isX(y));
System.out.println(“y is a Y: “ + Y.isY(y));
System.out.println();
System.out.println(“z is an Object: “ + X.isObject(z));
System.out.println(“z is an X: “ + X.isX(z));
System.out.println(“z is a Y: “ + Y.isY(z));
System.out.println();
return;

}}

COP 3330: Inheritance Page 32 © Mark Llewellyn

Inheritance Nuances – Typing (cont.)

• The definition of variable x assigns it to a new object of type
X. Because all classes in Java are extensions of the class
Object, both X.isObject(x) and X.isX(x) report
true.

• Class X is not extended directly or indirectly from class Y, so
Y.isY(x) reports false.

• Because variable y is defined to be of class type Y, where Y is
a subclass of X, each of X.isX(y), Y.isY(y), and
X.isObject(y) report true.

• Although the apparent type of z is X, the object referenced
by z is the same object that y references. Therefore, variable
z references a Y object and the tests regarding z report the
same results as the tests regarding y.

COP 3330: Inheritance Page 33 © Mark Llewellyn

Inheritance Nuances – Typing (cont.)

Output of program Y.java

COP 3330: Inheritance Page 34 © Mark Llewellyn

Inheritance Nuances – Late Binding
Consider the following class L.
public class L {

//L(): default constructor
public L(){

//no body necessary
}

//f(): facilitator
public void f(){

System.out.println(“Using method f() in L”);
g();

}

//g(): facilitator
public void g(){

System.out.println(“Using method g() in L”);
}

}

COP 3330: Inheritance Page 35 © Mark Llewellyn

Inheritance Nuances – Late Binding (cont.)
• Now consider class M that extends L. Together classes L and

M further demonstrate the power of polymorphism in Java.
public class M extends L {

//M(): default constructor
public M(){

//no body necessary
}

//g(): facilitator
public void g(){

System.out.println(“Using method g() in M”);
}

//main(): application entry point
public static void main(String[] args) {

L l = new L();
M m = new M();
l.f();
m.f();
return;

} }

COP 3330: Inheritance Page 36 © Mark Llewellyn

Inheritance Nuances – Late Binding (cont.)

• The statements of interest in main() are:
• Because class M does not override superclass

method f(), both f() invocations are
invocations of L’s method f(). However, the
invocations produce different results!
– The invocation l.f() causes statements

System.out.println(“Using method f() in L”);
g();

from the L definition of f() to be executed with respect to the
object referenced by variable l. Because l references an L
object, it is L method g() that is invoked. This produces the
first two lines of output from the program.

l.f();
m.f();

COP 3330: Inheritance Page 37 © Mark Llewellyn

Inheritance Nuances – Late Binding (cont.)

• The invocation m.f() again causes the statements:

System.out.println(“Using method f() in L”);
g();

from the L definition of f() to be executed. They
are executed with respect to the object referenced
by variable m. Because m references an M object,
it is M method g() that is invoked. This produces
the last two lines of output from the program.

COP 3330: Inheritance Page 38 © Mark Llewellyn

Inheritance Nuances – Late Binding (cont.)

Output from M.java

COP 3330: Inheritance Page 39 © Mark Llewellyn

Inheritance Nuances – Finality
• Just as Java permits a constant data field to be defined

through the use of the keyword final, it also permits
final methods and classes.

• A final class is a class that cannot be extended.

• A final method is a method that cannot be overridden.

• The developer of a class might make it final for economic
or security reasons. If clients have access only to the
.class version of a final class, then they must look to the
developer for additional features. As another example, a class
or method may be crucial to a system. By declaring its
finality, it is harder to tamper with the system by introducing
classes that override the existing code.

COP 3330: Inheritance Page 40 © Mark Llewellyn

Inheritance Nuances – Finality (cont.)

• Consider class U which is a final class. Therefore, class U
cannot be extended.

final public class U {
//U(): default constructor
public U(){

//no body necessary
}

//f(): facilitator
public void f(){

System.out.println(“Method f() can’t be overridden: U is final”);
}

}

COP 3330: Inheritance Page 41 © Mark Llewellyn

Inheritance Nuances – Finality (cont.)

• Consider class V which contains a method f() which is
declared as final. Therefore, method f() cannot be overridden
if V is extended.

public class V {
//V(): default constructor
public V(){

//no body necessary
}

//f(): facilitator
final public void f(){

System.out.println(“Method f() can’t be overridden: it is final”);
}

}

COP 3330: Inheritance Page 42 © Mark Llewellyn

Abstract Base Classes
• In program development, a need sometimes

arises for defining a superclass where for
some of its methods there are no sensible
definitions; that is, it is necessary to make
some methods part of the superclass so that
other code can exploit Java’s polymorphic
capabilities.

• Such classes are known as abstract classes.

COP 3330: Inheritance Page 43 © Mark Llewellyn

Abstract Base Classes (cont.)

• For example, in developing a geometric shape
hierarchy, a suitable superclass GeometricObject
for the hierarchy might have two data fields:
– Point position

• defining the upper northwest corner of the shape’s bounding
box.

– Color color
• defining the color of the shape.

• The following methods are reasonable for the
superclass GeometricObject. You might think of
some others that would also be reasonable to
include.

COP 3330: Inheritance Page 44 © Mark Llewellyn

Abstract Base Classes (cont.)

– Point getPosition()
• returns the upper northwest corner of the shape’s bounding box.

– void setPosition(Point p)
• sets the upper northwest corner of the shape’s bounding box to p.

– Color getColor()
• returns the color of the shape.

– void setColor(Color c)
• sets the color of the shape to c.

– void paint(Graphics g)
• renders the shape in graphics context g.

COP 3330: Inheritance Page 45 © Mark Llewellyn

Abstract Base Classes (cont.)

• We can only define sensible implementations for
getPosition(),setPosition(),
getColor(), and setColor().
//getPosition(): return object position
Point getPosition(){

return position;
}
//setPosition(): update object position
void setPosition(Position p){

position = p;
}
//getColor(): return object color
Color getColor(){

return color;
}
//setColor(): update object color
void setColor(Color c){

color = c;
}

COP 3330: Inheritance Page 46 © Mark Llewellyn

Abstract Base Classes (cont.)

• Method paint() has no sensible implementation
because it is shape-specific. The rendering of a
rectangle is different from the rendering of a line,
which is different from the rendering of a circle.

• Because there is no sensible implementation for
paint(), it makes sense to use the Java
modifier abstract to make GeometricObject
an abstract class and to make its method
paint() an abstract method.

COP 3330: Inheritance Page 47 © Mark Llewellyn

Abstract Base Classes (cont.)

• The keyword abstract at the start of a class definition
indicates that the class can be instantiated; i.e., you cannot
create directly a new GeometricObject.

• The keyword abstract at the start of a method
definition indicates that the definition of the method
will not be supplied. Non-abstract subclasses of the
abstract superclass must provide their own definitions
of the abstract method, which would not have been the
case if the superclass had instead defined the method
with an empty statement list for its method body.

• The complete definition of the abstract class
GeometricObject appears in the next slide.

COP 3330: Inheritance Page 48 © Mark Llewellyn

//GeometricObject: abstract superclass for geometric objects
import java.awt.*;

abstract public class GeometricObject{
//instance variables
Point position;
Color: color;

//getPosition(): return object position
Point getPosition(){

return position;
}
//setPosition(): update object position
public void setPosition(Position p){

position = p;
}
//getColor(): return object color
public Color getColor(){

return color;
}
//setColor(): update object color
public void setColor(Color c){

color = c;
}
//paint(): render the shape to a graphics context g
abstract public void paint(Graphics g);

}

COP 3330: Inheritance Page 49 © Mark Llewellyn

Extending Abstract Base Classes

• In the next couple of slides we’ll extend the
abstract GeometricObject class with
two subclasses called Box and Circle.

• Because classes Box and Circle both
define a paint() method, the classes are
non-abstract and can be instantiated.
Circle c = new Circle(1, new Point(0,0), Color.blue);

Box r = new Box(1, 2, new Point(3,4), Color.red);

COP 3330: Inheritance Page 50 © Mark Llewellyn

//Box: rectangle shape representation
import java.awt.*;

public class Box extends GeometricObject{
//instance variables
int length;
int height;

//Box(): default constructor
public Box(){

this(0,0, new Point(), Color.black);
}
//Box(): specific constructor
public Box(int l, int h, Point p, Color c){

setLength(l);
setHeight(h);
setPosition(p);
setColor(c);

}
//getLength(): get the rectangle length: accessor
public int getLength(){

return length;
}

Box Class

COP 3330: Inheritance Page 51 © Mark Llewellyn

//getHeight(): get the rectangle height: accessor
public int getHeight(){

return height;
}
//setLength(): rectangle length mutator
public void setLength(int l){

length = l;
}
//setHeight: rectangle height mutator
public void setHeight(int h){

height = h;
}
//paint(): render the rectangle in graphics context g
public void paint(Graphics g){

Point p = getPosition();
Color c = getColor();
int l = getLength();
int h = getHeight();
g.setColor(c);
g.fillRect((int) p.getX(), (int) p.getY(), l, h);

}
}

COP 3330: Inheritance Page 52 © Mark Llewellyn

//Circle: circle shape representation
import java.awt.*;

public class Circle extends GeometricObject{
//instance variable
int radius;

//Circle(): default constructor
public Circle(){

this(0, new Point(), Color.black);
}
//Circle(): specific constructor
public Circle(int r, Point p, Color c){

setRadius(r);
setPosition(p);
setColor(c);

}
//getRadius(): get the radius of the circle: accessor
public int getRadius(){

return radius;
}

Circle Class

COP 3330: Inheritance Page 53 © Mark Llewellyn

//setRadius(): circle radius mutator
public void setRadius(int r){

radius = r;
}

//paint(): render the circle in graphics context g
public void paint(Graphics g){

Point p = getPosition();
Color c = getColor();
int r = getRadius();
g.setColor(c);
g.fillOval((int) p.getX(), (int) p.getY(), r, r);

}
}

COP 3330: Inheritance Page 54 © Mark Llewellyn

More On Abstract Base Classes
• Abstract classes are valid types. Therefore, you can initialize a

variable of an abstract type to reference an existing subclass
object of that type.

GeometricObject g = c;//a circle is a GeometricObject

• You can also use an abstract base type to define a polymorphic
method.

public void renderShapeInBlue(Graphics g, GeometricObject s){
g.setColor(Color.blue);
s.paint(g); //drawing is based on s’s subclass type

}

– This method will set the color for the current graphical context g to
blue and then draw the object referenced by s in that context.
Because Java invokes the paint() method for the type of object
to which parameter s refers, the type of drawing depends on the
GeometricObject subclass type of s.

COP 3330: Inheritance Page 55 © Mark Llewellyn

Interfaces
• In addition to allowing programmer to define abstract classes,

Java also allows the programmer to define interfaces.

• An interface is not a class but is instead a partial
template of what must be in a class that implements the
interface. Every method in the interface must be
implemented by any class that implements the interface.

• An interface is a Java type and can be used as such.

public interface name {

//constants

//method declarations

}

All variables are either explicitly or
implicitly public class constants
(i.e., public static final)

All listed methods are either
explicitly or implicitly public

COP 3330: Inheritance Page 56 © Mark Llewellyn

Interfaces (cont.)

• An interface definition differs from an abstract
class definition in three important ways:

1. An interface cannot specify any method
implementations.

2. All of the methods of an interface are public.

3. All of the variables defined in an interface are
public, final, and static.

COP 3330: Inheritance Page 57 © Mark Llewellyn

Interfaces (cont.)

• Why use an interface when an abstract class offers
greater flexibility? There are two primary reasons:

1. Java allows a class to implement more than one interface,
whereas a class can extend only one superclass.

2. An interface is not a class, it is not part of a class
hierarchy. Two unrelated classes can implement the
same interface with objects of those unrelated classes
having the same type – the interface their class types
implement.

COP 3330: Inheritance Page 58 © Mark Llewellyn

Interfaces (cont.)
• As an example, consider the interface Colorable

shown below.
• Implementing the interface requires two methods –

getColor() and setColor().

• The next couple of pages are reworkings of the classes
ColoredPoint and Colored3DPoint from Day 19.

package geometry;
import java.awt.*;

public interface Colorable {
//getColor(): color accessor
public Color getColor();
//setColor(): color mutator
public void setColor(Color c);

}

COP 3330: Inheritance Page 59 © Mark Llewellyn

The ColorablePoint Class

//representation of a colored 2-d point
package geometry;
import java.awt.*;

public class ColorablePoint extends Point implements Colorable{
//instance variable
Color color;

//ColorablePoint(): default constructor
public ColorablePoint(){

super();
setColor(Color, blue); //default color

}

//ColorablePoint(): specific constructor
public ColorablePoint(int x, int y, Color c){

super(x,y);
setColor(c);

}

extends Point class

implement Colorable
interface

COP 3330: Inheritance Page 60 © Mark Llewellyn

//getColor(): color property accessor
public Color getColor(){

return color;
}

//setColor(): color property mutator
public void setColor(Color c){

color = c;
}

//toString(): string representation facilitator
public String toString(){

Color c = getColor();
return “[“ + super.toString() + “,” c.toString() + “]”;

}

COP 3330: Inheritance Page 61 © Mark Llewellyn

//equals(): equality facilitator
public boolean equals(Object v){

if (v instanceof ColorablePoint){
Color c1 = getColor();
Color c2 = ((ColorablePoint) v).getColor();
return super.equals(v) && c1.equals(c2);

}
else {

return false;
}

}

//clone(): cloning facilitator
public Object clone(){

return new ColorablePoint(x,y,getColor());
}

}//end class ColorablePoint

COP 3330: Inheritance Page 62 © Mark Llewellyn

The Colorable3DPoint Class

//representation of a colored 3-d point
package geometry;
import java.awt.*;

public class Colorable3DPoint extends ThreeDPoint implements Colorable{
//instance variable
Color color;

//Colorable3DPoint(): default constructor
public Colorable3DPoint(){

setColor(Color, blue); //default color
}

//Colorable3DPoint(): specific constructor
public Colorable3DPoint(int a, int b, int c, Color d){

super(a,b,c);
setColor(d);

}

COP 3330: Inheritance Page 63 © Mark Llewellyn

//getColor(): color property accessor
public Color getColor(){

return color;
}

//setColor(): color property mutator
public void setColor(Color c){

color = c;
}

//toString(): string representation facilitator
public String toString(){

Color d = getColor();
return “[“ + super.toString() + c.toString() + “]”;

}

COP 3330: Inheritance Page 64 © Mark Llewellyn

//equals(): equality facilitator
public boolean equals(Object v){

if (v instanceof Colorable3DPoint){
Color c1 = getColor();
Color c2 = ((Colorable3DPoint) v).getColor();
return super.equals(v) && c1.equals(c2);

}
else {

return false;
}

}

//clone(): cloning facilitator
public Object clone(){

return new Colorable3DPoint(a,b,c,getColor());
}

}//end class Colored3DPoint

COP 3330: Inheritance Page 65 © Mark Llewellyn

Interfaces (cont.)

• ColorablePoint is a reworking of the class
ColoredPoint from Day 19 notes. Similarly,
Colorable3DPoint is a reworking of the
class Colored3DPoint also from Day 19.

• Except for the cosmetic differences between the
two versions of each of these classes, the only
other difference is that ColorablePoint and
Colorable3DPoint implement interface
Colorable.

COP 3330: Inheritance Page 66 © Mark Llewellyn

Interfaces (cont.)

• Because both ColorablePoint and
Colorable3DPoint implement the
Colorable interface, a polymorphic code
segment such as the following is possible:

ColorablePoint u = new ColorablePoint();
Colorable3DPoint v = new Colorable3DPoint();
Colorable w = u;
w.setColor(Color.black);
w = v;
w.setColor(Color.red);

ColorablePoint method
setColor() is invoked

Colorable3DPoint method
setColor() is invoked

COP 3330: Inheritance Page 67 © Mark Llewellyn

Interfaces (cont.)

• In the polymorphic segment of the
previous slide, variable w used in the
invocation of two different setColor()
methods.

• This polymorphic circumstance is possible
because points u and v share the
common interface type Colorable.

COP 3330: Inheritance Page 68 © Mark Llewellyn

Interfaces (cont.)

• A polymorphic method can be defined to take advantage
of interface-implemented commonality.

• Consider the following class Blue with polymorphic
class method setBlue().

public class Blue {
public static void setBlue(Colorable p){

p.setColor(Color.blue);
}

}

Parameter can be either a
ColorablePoint or a
Colorable3DPoint.

ColorablePoint a = new ColorablePoint();
Colorable3DPoint b = new Colorable3DPoint();
Blue.setBlue(a);
Blue.setBlue(b);

invokes setColor() method in
ColorablePoint class

invokes setColor() method in
Colorable3DPoint() class

COP 3330: Inheritance Page 69 © Mark Llewellyn

Interfaces (cont.)

• Even though both ColoredPoint and
Colored3DPoint implement getColor()
and setColor() methods, comparable code
segments with ColoredPoint and
Colored3DPoint being used are not
possible. WHY?

• Because, ColoredPoint and Colored3DPoint
are not of type Colorable, whereas
ColorablePoint and Colorable3DPoint are, as
the example on the next slide illustrates.

COP 3330: Inheritance Page 70 © Mark Llewellyn

Interfaces (cont.)

ColoredPoint c = new ColoredPoint();

Colored3DPoint d = new Colored3DPoint();

Colorable e = c;

e.setColor(Color.cyan);

e = d;

e.setColor(Color.green);

Blue.setBlue(c);

Blue.setBlue(d);

Illegal: c does not reference a
Colorable object

Illegal: d does not reference a
Colorable object

Illegal: c does not reference a
Colorable object

Illegal: d does not reference a
Colorable object

